Grant Maloy Smith

Tuesday, February 14, 2023 · 0 min read

ADAS Standards and ADAS Safety Protocols

This article talks about ADAS standards, regulations, and safety protocols in place today. We will cover the topic in enough depth that you will:

  • Understand what is the importance of ADAS standards

  • Learn about different organizations behind ADAS regulations

  • See which regulations and safety protocols are in place

Dewesoft logo

This is PART 4 of 4 in the ADAS series:

Part 1: What is ADAS?
Part 2: Types of ADAS sensors in use today
Part 3: How are ADAS systems and autonomous vehicles tested?
Part 4: ADAS standards and safety protocols (this article)

The importance of standards

There is already an array of organizations around the world, each involved in various aspects of vehicle safety. And since ADAS (advanced driver assistance systems) are increasingly built into cars, trucks, and buses, these organizations have been steadily incorporating more and more ADAS-related standards and protocols. 

ADAS is meant to reduce human errors that lead to vehicle accidents, as we covered in part 1 of this series. ADAS operates both passively, i.e., alerting the driver of a potential collision, or actively, by braking and/or steering the vehicle. But whether an ADAS system simply warns the driver or takes control of the steering wheel and performs an automatic emergency brake manoeuvre, the goal is the same: to save lives. Please refer to part 1 of this series for a comprehensive list of ADAS features.

These organizations are continually defining, refining, and mandating automotive testing and regulations across Europe, North America, and around the world.

Due to the dynamic nature of ADAS development, it’s a constant challenge for regulators to keep up. So, while over-regulation can sometimes constrain development, under-regulation might lead to compromised safety protocols, and no one wants that. The point of ADAS is to save lives by preventing accidents. The regulators are charged with making sure that any technology built into our cars only improves safety, and does not present a hazard itself.

Below are the major organizations involved in setting, maintaining, and in some cases, enforcing these standards.

SAE international

The automotive standards that SAE International authorizes are written and maintained by nearly 10,000 engineers. Based in western Pennsylvania in the United States of America, SAE International was formerly named “The Society of Automotive Engineers.” They changed their name to represent the broader range of applications in which they are involved, including aerospace. 

SAE international logo

SAE standards are used by 120,000 members all around the world, in the automotive and aerospace domains. SAE standards do not have legal authority, but they are often referenced and incorporated by the National Highway Traffic Safety Administration (NHTSA) in America, as well as Transport Canada. For example, SAE J3016, which defines the six levels of automation for cars, has been adopted by the NHTSA.

Just a few Automated Driving and ADAS-related SAE standards:

The above standards are trademarks of SAE International
J3016™Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems
J3134™ADS Equipped Vehicle Signal and Marking Lights (Work in Progress)
J3114™Human Factors Definitions for Automated Driving and Related Research Topics
J3018™Guidelines for Safe On-Road Testing of SAE Level 3, 4, and 5 Prototype Automated Driving Systems
J2395™ITS In-Vehicle Message Priority
J2831™Development of Design & Engineering Recommendations for In-Vehicle Alphanumeric Messages
J2988™Guidelines for Speech Input & Audible Output in Driver Vehicle Interface
J2944™Operational Definitions of Driving Performance Measures & Statistics
J3045™Truck & Bus Lane Departure Warning Systems Test Procedure
J3048™Driver-Vehicle Interface Considerations for Lane Keeping Assistance Systems
J2400™Human Factors in Forward Collision Warning Systems Operating Characteristics & User Interface
J2972™Definition of Hands-Free Operation of a Person to Person Wireless Communication System or Device
J2399™Adaptive Cruise Control Operating Characteristics & User Interface
J2808™Road/Lane Departure Warning Systems: Information for the Human Interface
J3077™Definitions and Data Sources for the Driver Vehicle Interface (DVI)

ISO 26262 ASIL - automotive safety integrity level

ISO is the International Organization for Standardization. ISO develops and publishes International Standards for a wide range of technologies, including automobiles. ISO 26262 defines a risk classification system, also known as an “ASIL” (Automotive Safety Integrity Level) for the functional safety of road vehicles.

ISO logo

ISO 26262 defines four levels, where A is the lowest level of risk, and D is the highest. Systems including airbags and anti-lock brakes get the highest level, since their proper function is so critical to safety, whereas less critical systems such as brake lights rate an A level.

ASIL levels are determined by three factors: severity, exposure, and controllability, and each one of these three has several classes. For example, severity is classified from S0 to S3:

  • S0: No injuries

  • S1: Light to moderate injuries

  • S2: Severe to life-threatening (survival probable) injuries

  • S3: Life-threatening (survival uncertain) to fatal injuries

Because the ASIL system is subject to some interpretation, in 2015 SAE International wrote J2980, “Considerations for ISO 26262 ASIL Hazard Classification.” This standard was revised in 2018. SAE J2980 provides better guidance for assessing the risks as defined in ISO 26262.

NHTSA - national highway and traffic administration

NHTSA logo

NHTSA is a department within the US DOT (Department of Transportation). They describe their mission as, "Save lives, prevent injuries, reduce vehicle-related crashes." They manage and enforce automotive-related safety standards, including those developed internally as well as some external standards from SAE, for example. The NHTSA famously invented the crash test dummy in the 1960s. They license foreign and domestic manufacturers to sell their vehicles within the USA, and they have the power to block the import of vehicles that do not meet the Federal Motor Vehicle Safety Standards (FMVSS).

The NHTSA’s FMVSS is akin to the United Nations’ World Forum for Harmonization of Vehicle Regulations, administered by UNECE, described below.

FMVSS guidelines particularly relevant to ADAS verification are highlighted in the table below:

Table from “FMVSS Considerations for Vehicles With Automated Driving Systems: Volume 1” US DOT 812 796, NHTSA, April 2020
Crash Avoidance Crashworthiness & Occupant Protection
101 Controls and displays110 Tire selection and towing124 Accelerators201 Occupant protection
102 Transmission related111 Rear visibility125 Warning devices202a Head restraint
103 Windshield defrosting113 Hood latch systems126 Stability controls203 Driver impact protection
104 Windshield wiping & washing114 heft protection138 Tire pressure monitoring systems204 Steering control
108 Lamps and reflectors118 Power windows and roof systems141 Hybrid/electric sound requirements205 Glazing materials

UNECE

Part of the United Nations, the UNECE is the United Nations Economic Commission for Europe. UNECE fosters economic harmonization among nations. In 2012 the UNECE’s World Forum for Harmonization of Vehicle Regulation established new regulations intended to improve passenger safety, including:

UNECE logo
  • Lane Departure Warning System (LDWS)

  • Child Restraint Systems (CRS)

  • Advanced Emergency Braking System (AEBS)

A shortlist of the types of regulations promulgated by the UNECE includes the following:

UN ECE R 13Braking of Vehicles and Trailers
UN ECE R 13-HBraking of Vehicles of Categories M1 and N
UN ECE R 79Steering Equipment
UN ECE R 130Lane Departure Warning System
UN ECE R 131Advanced Emergency Braking Systems (AEBS)
UN ECE R 139Brake Assist Systems (BAS)
UN ECE R 140Electronic Stability Control (ESC) System / FMVSS 126 / GTR 8
UN ECE R 141Tire Pressure Monitoring Systems (TPMS)
UN ECE R 151Blind Spot Detection
UN ECE R 152Advanced Emergency Braking Systems
UN ECE R 157Automated Lane Keeping Systems (ALKS)
UN ECE R 158Reversing Motion Detection
UN ECE R 159Moving Off Information System (MOIS)

Transport Canada

Transport Canada is a federal agency that is responsible for transportation policies and programs in Canada. They manage defects and recalls, the importing of foreign-made vehicles, child car seats, and a wide range of safety standards for private and commercial vehicles. Canada has a set of safety standards similar to the USA’s FMVSS called the CMVSS (Canada Motor Vehicle Safety Standards).

Transport Canada logo

Transport Canada performs extensive crash testing at their Motor Vehicle Test Centre in Quebec. They manage safety recalls for the Canadian market, and are involved in every aspect of road and vehicle safety.

EURO NCAP

EURO NCAP (The European New Car Assessment Programme) has a five-star rating system that ranks the safety of vehicles, for the benefit of consumers and vehicle fleet managers. They derive these results by conducting tests on their own and accredited proving grounds.

Euroncap logo

Their rankings from 0 to 5 stars are defined on their website:

Euro NCAP starsDescription
00-star safety: Meeting type-approval standards so can legally be sold but lacking critical modern safety technology
11-star safety: Marginal crash protection and little in the way of crash avoidance technology
22-star safety: Nominal crash protection but lacking crash avoidance technology
33-star safety: At least average occupant protection but not always equipped with the latest crash avoidance features
44-star safety: Overall good performance in crash protection and all-round; additional crash avoidance technology may be present
55-star safety: Overall excellent performance in crash protection and well equipped with comprehensive and robust crash avoidance technology

JARI (Japan)

The Japan Automobile Research Institute (JARI) is a foundation dedicated to automotive research and testing In 2003, JARI merged with the Japan Electric Vehicle Association (JEVA) and the Association of Electronic Technology for Automobile Traffic and Driving (AETATD). 

Japan institute logo

Previously, the JEVA drafted and promoted standards, and the AETATD researched methods of combining automotive and information technologies. Now, all of these functions are performed by JARI. Tests are performed at JARI’s Shirosato Test Center (STC) 120 km (75 miles) northeast of Tokyo, Japan.

CATARC (China)

The China Automotive Technology and Research Center (CATARC) is a scientific research institute. Established in 1985 to help China manage its automotive industry, it is now a part of SASAC (State-owned Assets Supervision and Administration Commission of the State Council).

Catarc logo

Among other things, they are involved with C-NCAP, C-ECAP, and proving ground testing.

NTC (Australia)

The Australian government’s Department of Infrastructure, Transport, Regional Development, and Communications administers the Australian Design Rules (ADRs), which are national standards of vehicle safety. They are focused on driver protection, emissions, braking, and much more.

NTC logo

Today’s Third Edition ADRs were codified by the Motor Vehicle Standards Act of 1989. Every automobile driven on Australian roads, regardless of where it was manufactured, must comply with the ADRs. The official policy of the Australian government is to bring their standards into harmonization with international regulations of the UN (see above), wherever possible.

National Transport Commission (NTC) was established in 2003 to guide safety regulations in Australia.

Common ADAS-related acronyms

  • ABS - Anti-lock Braking System

  • ADAS - Advanced Driver Assistance System

  • ADS - Automated Driving System

  • AEBS - Advanced Emergency Braking System

  • ALKS - Automated Lane Keeping Systems (see also LDWS)

  • ANSI - American National Standards Institute

  • ASIL - Automotive Safety Integrity Level

  • AV - Autonomous Vehicle

  • BAS - Brake Assist Systems

  • CATARC - China Automotive Technology and Research Center (China)

  • CRS - Child Restraint System

  • DDT - Dynamic Driving Task

  • DGPS - Differential GPS

  • DOE - The Department of Energy (USA)

  • DOT - The Department of Transportation (USA)

  • ECE - Economic Commission for Europe

  • ECU - Electronic Control Unit

  • EGNOS - European Geostationary Navigation Overlay Service

  • ESC - Electronic Stability Control

  • EURO NCAP - The European New Car Assessment Programme

  • FCW - Forward Collision Warning

  • FHA - Federal Highway Administration (USA)

  • FMVSS - Federal Motor Vehicle Safety Standards (USA)

  • GBAS - Ground-Based Augmentation System (for GNSS)

  • GLONASS - Global Navigation Satellite System (Russia)

  • GLS - GBAS-based Landing System

  • GNSS - Global Navigation Satellite System

  • GPS - Global Positioning System (USA)

  • IIHS - The Insurance Institute for Highway Safety

  • IMU - Inertial Measuring Unit

  • ISO - International Organization for Standardization

  • JARI - Japan Automobile Research Institute (Japan)

  • LDWS - Lane Departure Warning System (see also ALKS)

  • LiDAR - Light Imaging Detection and Ranging

  • MOIS - Moving Off Information System

  • MTSAT - Multi-functional Satellite Augmentation System

  • NDGPS - Nationwide Differential GPS System (USA)

  • NHTSA - The National Highway and Traffic Administration (USA)

  • NTC - National Transport Commission (Australia)

  • RADAR - Radio Detection and Ranging

  • RTK - Real-Time Kinematics

  • SBAS - Satellite-Based Augmentation System (for GNSS)

  • SAE - SAE International

  • SONAR - Sound Navigation and Ranging

  • TCS - Traction Control System

  • TPMS - Tire Pressure Monitoring Systems

  • UNECE - United Nations Economic Commission for Europe

  • WAAS - Wide Area Augmentation System

Summary

The more control we give to the ADAS systems, the more rigorously the systems need to be tested. The technology must be held to the highest safety standards. People’s lives and safety are at stake. 

The rapid pace of ADAS technologies and the attending development testing creates a challenge for standards bodies and enforcing agencies to keep up. Some of the ADAS technologies installed in cars, trucks, and buses today were absolutely unthinkable even 10 years ago.

Dewesoft logo

This is PART 4 of 4 in the ADAS series:

Part 1: What is ADAS?
Part 2: Types of ADAS sensors in use today
Part 3: How are ADAS systems and autonomous vehicles tested?
Part 4: ADAS standards and safety protocols (this article)